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Acoustic emission by vortex-edge interaction is investigated both theoretically and 
experimentally. The theory of vortex sound enables us to represent the far-field 
pressure in terms of the vortex motion near the half-plane edge. It is found that the 
pressure p depends on the product of an angular factor representing directionality 
and a time factor representing wave profile. The pressure formula leads to the scaling 
law p cc flL-p for the sound emitted by a vortex ring of velocity U ,  L being the 
nearest distance of the vortex path to the edge. The sound intensity is proportional 
to Us and shows cardioid directionality pattern. 

The vortex ring used in the experiment had radius about 4.7 mm and velocity 
ranging from 29 to 61 m/s. The above scaling law of the pressure and the cardioid 
directionality of the intensity were reproduced in the experiment with reasonable 
accuracy. Especially notable is the agreement between the predicted and observed 
wave profiles. The theoretical profile is determined by the i th  time derivative of the 
volume flux (through the vortex ring) of a hypothetical potential flow around the 
edge. 

1. Introduction 
Theoretical formulation of the influence of solid boundaries on sound generation 

by unsteady flows was first made by Curle (1955)’ extending Lighthill’s theory of 
aerodynamic sound (Lighthill 1952). Later, Ffowcs Williams & Hall (1970) and 
Crighton & Leppington (1970) considered noise generation by turbulent eddies in the 
vicinity of a sharp edge of the bounding surface, which is not included in Curle’s 
theory. A dimensional analysis based on the idea that the velocity scale and 
lengthscale in the problem are given by those in the turbulence yields the law that 
the intensity of sound from free turbulence is proportional to the eighth power of the 
flow velocity, while that induced by the surface dipole of Curle’s type is proportional 
to the sixth power. However, the sound generated by the edge-turbulence inter- 
action is proportional in intensity to the fifth power of the flow velocity. Thus the 
wave field associated with the edgeturbulence interaction is more powerful at low 
Mach numbers than both Lighthill’s quadrupole field and Curle’s dipole field. In  the 
analysis of Ffowcs Williams & Hall, the pressure of the aerodynamic sound is 
essentially described by the behaviour of a Green function of the linear wave 
equation. They point out that their conclusions rest upon the potential field 
singularity derived from the Green function. 

We investigate here the wave emission by a circular vortex ring passing near the 
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edge of a half-plane (semi-infinite plane). The fifth-power law and emission 
directionality obtained in the turbulence-edge interaction are found to hold also in 
the vortex-edge interaction. The directivity diagram of the intensity takes the form 
of a cardioid curve in planes perpendicular to the edge. However, the pressure of the 
acoustic wave increases like LP2 as the distance L of the vortex path to the edge 
decreases, whereas in the turbulence-edge case it decreases like L i .  This discrepancy 
is related to the difference that in the present vortex-edge case the timescale is given 
by Ll U and dependent on the impact distance L, U being the vortex translation speed, 
while in the turbulence-edge analysis the timescale is assumed to be independent 
of L. One of the reasons for the use of a vortex ring in the present problem is that 
we can determine the temporal wave profile, owing to the simple geometry, and 
further can compare i t  with experimental observation. The potential flow around the 
edge plays a crucial role in this case, and the wave profile is found to be related to 
the ith time derivative of the volume$ux, through the moving vortex ring, of the 
hypotheticaz steady potential flow around the edge. 

The corresponding two-dimensional problem of acoustic emission from a vortex 
filament moving around a half-plane is considered by Crighton (1972), Howe (1975) 
and Mohring (1978) from various aspects. The cardioid intensity pattern as well as 
the wave profile was given by Crighton. Howe found that the rate at  which the vortex 
traverses the streamlines of hypothetical potential flow around the edge determines 
the instantaneous intensity of the sound, whereas Mohring gave an explicit form of 
a vector function of the two-dimensional problem which is used in his vector 
Green-function formulation. Cannell & Ffowcs Williams (1973) investigated another 
two-dimensional radiation, from the motion of vortex filaments coupled to a 
semi-infinite duct, which also exhibits the edge effects. 

In  parallel with the mathematical analysis, we have conducted a corresponding 
experiment. The vortex ring used in the experiment had radius about 4.7 mm and 
velocity U ranging from 29 to 61 m/s. It is interesting to fhd that the cardioid pattern 
is reproduced in the experiment. Furthermore, i t  is shown that the present theory 
can predict the observed wave profile with reasonable accuracy. We think this is one 
of the important results of the present work. 

The cardioid pattern is also observed in the noise from a nozzle flow attached k 8 0  
one side of a large flat plate, which was measured by R. E. Hayden and is shown in 
figure 3.24 of Goldstein (1976). 

In  $2 the mathematical formulation of the vortex sound is summarized, giving a 
formula for the acoustic wave pressure emitted by vortex motion. The acoustic 
pressure is represented in terms of vorticity and Green function. Subsequently the 
Green function is given in the form of asymptotic series. This is derived from the exact 
form, which is known in the half-plane diffraction problem. Using this asymptotic 
expression we obtain an explicit expression for the acoustic pressure emitted from 
a vortex ring moving rectilinearly near the edge. This compact expression is given 
in $3. The present analysis is based on the inviscid equation of motion. General 
consideration of the viscosity effect is given in Kambe (1984) and Kambe & Mya 00 
(1984). The experimental procedure is similar to that used in Kambe & Minota (1983) 
for the detection of the acoustic emission from head-on collision of two vortex rings. 
This is summarized in $4 together with a description of the setup. Data analysis and 
comparison with theory are described in 555 and 6. 
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2. Mathematical formulation 
2.1. Pressure formula 

We consider a rigid half-plane (vanishingly thin) immersed in an unbounded inviscid 
fluid of uniform density po at rest at infinity, where the sound speed is c. In  order 
to make the discussion definite, we assume that (i) the flow is characterized by the 
representative scales of velocity u, length 1 and time Zlu, (ii) the characteristic Mach 
number M = u/c is much less than unity, ensuring that a typical wavelength h of 
sound generated is much larger than the flow scale 1, i.e. A = c(Z/u) = 1/M 9 1, and 
(iii) non-zero vorticity is located well within a wavelength h from an origin taken 
on the edge of the half-plane. The conditions (ii) and (iii) will be called the 
compactness conditions below. Let us define the ratio 

8 = l /h 

as a smallness parameter in the present problem. 

inhomogeneous wave equation 
Sound emission from a localized flow at low Mach number is described by the 

(e.g. Lighthill 1952; Mohring 1978) where p is the pressure and u = (vi) the velocity. 
We seek a solution of this equation under an imposed boundary condition on the 
half-plane. In  view of the assumption of low Mach number, the source flow can be 
described with sufficient accuracy by the equations of incompressible flow : 

v p ,  V * u = O .  
a 1 
- u+ (u-V) u = -- 
at Po 

These are supplemented with the boundary condition of vanishing normal velocity 
at the rigid surface S. 

We are here concerned with acoustic emission by vortex motion. The dynamics of 
the vorticity o = rot u is described by the equation, 

a 
- o + r o t ( o x u )  = O .  (2.3) at 

For incompressible motion, the source term on the right of (2.1) is rewritten as 

where 

2 2  
W 

vi vj = po div L, 

V2 
L = (U.V)U = o x  u+vy .  

Y 

The inhomogeneous wave equation (2.1) with the right-hand side replaced by (2.4) 
is transformed into an integral form by using the Green function G satisfying the 
eauation 

together with the condition of vanishing normal derivative on the boundary 
surface S: 

- 0  onS,  (2.7) 
aG 
an 
_ -  
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Half-plane 

FIQURE 1. Definition sketch. 

where a / &  is the normal derivative. Performing partial integration once, we obtain 

(2.8) p(x,t) = -po sJV,G(x,y; t-T)*LdydT, 

where all the surface integrals vanish owing to the conditions (2.7), ap/& = 0 and 
L*n = 0 on S, n being the unit normal to S and V, the gradient operator with respect 
to the vector y. According to Mohring's transformation procedure, which introduces 
a vector function G by the relation V, G = V,, x G with the condition n x G = 0 for 
y on 8, we find an alternative expression for the pressure: 

The vector Green-function formulation is also developed by Obermeier (1979, 1980). 

2.2. Green function 

Our present problem is the study of acoustic emission by a vortex ring moving near 
the edge of a rigid half-plane S which lies in 

x ,<o ,  x 2 = o ,  - ~ < x 3 < + c o .  

To this end we have to know the Green function G(x,y; t )  involved in the pressure 
formula (2.8). We are particularly interested in the value of the function G(x,y; t )  
at a distant point x = ( x 1 , x 2 , z 3 )  generated by a source a t  a point y = (y1,y2,y3) 
(figure 1). We always consider the case where y is in the near field, well within a 
wavelength from the origin on the edge, and x in a distant wave region. By the 
reciprocal theorem for the wave equation (e.g. Landau & Lifshitz 1958), we may 
interchange the source and observation points, and solve for the field at  a pointy due 
to a source at  a far-field point x. Thus the problem reduces to the diffraction problem. 

In order to find the Green function, it is convenient to use a series form, although 
a closed-form solution is known, as shown in Appendix A. This asymptotic analysis 
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leads to a mathematically simple formulation and physically transparent form of the 
law of the vortex sound. The compactness conditions (ii) and (iii) enable us to use 
the low-frequency Green function (Howe 1975), which is expressed by the first few 
terms of the asymptotic expansion series valid for small kl = O(E) ,  where k is a 
wavenumber. 

In Appendix A, Fourier expressions of the incident field do and the scattered field 
4, are given in the series form, where the total field is given by 4, + 0,. Using these 
and performing Fourier inversion by the formula (A l ) ,  we obtain immediately the 
Green functions Go and G, in the series form 

**Y (x*y)2 D;s(t,)+ ...), (2.10) 
1 

G~(x,Y;  t )  = - (6(t,)+- Dt&(t,)+- 4x2 cx 2c2x2 

G,(x,Y; t)  = Gi+G,+++G,+ ... , (2.11) 

where G m  =-@m(X)!Pm(Y)z-m-'DZns(t*), Am (m =f, 1, ...), (2.12) 
Cm 

a 
( -iw),,, e-iot dw, D, = %, (2.13) 

(2.14) 
2 1 

t, = t-- ,  t* = t - -  I x - y , k l ,  
C C 

z = 1x1, k = ( O , O ,  l ) ,  

and the variables X = (x,, x2) and Y = (y,, y2) are two-dimensional projections of x 
andy. The constants A,,, (m = f ,1 ,  ...) are defined in (A 13) of Appendix A. The first 
few terms are used as the low-frequency Green function. It is to be noted that 
fractional derivatives appear in the terms G,,, with half-integer values of m. 

If the Green function G = Go+Gs is substituted in (2.8), we find that the 
contributions from the first two terms of (2.10) vanish and the contribution from G, 
vanishes too. This is because (i) the first term of Go does not include y and (ii) we 
have the vanishing integral, 

sL,dy = Js vtv ,dS = 0, 

from G, and the second term of Go. Therefore the total Green function G = Go + G, 
may be well approximated by 4: 

G(x,Y;  t )  = At~-f@i(X)  @;( Y) ~ i D f 6 ( t , )  

(2.15) 

The error incurred by ignoring and higher-order terms will be of order B = l /h.  It 
is remarkable that this form of the Green function is proportional to the velocity 
potential @i( Y) = Yi sin:@ of the irrotational flow around the edge, which contains 
the whole of the variation with y, and y2. 

With this form of the function G, we first note aG/ay, = O( I G l /A ) ,  which is smaller 
in order of magnitude than aG/ay, or aG/ay2. Therefore VG is approximated with 
sufficient accuracy by the two-dimensional vector 
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This approximation is consistent with the expression for Ggiven in (2.15). Introducing 
a stream function Y( Y) corresponding to the potential flow @t( Y) by the relation 
a @ p y l  = aY/ay2, a@&, = -aY/ay,, we find that VG is also written as 

VG = rot [Y(Y)k]A:c-t@t(X)x-tDi6(t,), (2.16) 

(2.17) Y( Y) = - Yt cosgi3, 

Y = I Y I , 6 = tan-' fi. 
Y1 

Introducing (2.16) into (2.8), performing partial integration and using (2.3), we finally 
fmd the acoustic pressure as 

where 

(2.18) 

and t ,  is replaced by tr = t -x/c because of the compactness of the source. The far-field 
pressure depends only on the vorticity component parallel to the plate edge in the 
leading approximation. This final expression is equivalent to choosing the vector 
Green function as G = (0, 0, F )  Dis(t,) in (2.9). 

3. A vortex ring moving near the edge 
We consider a circular vortex ring of very thin core, whose centre is moving in a 

plane perpendicular to the y3 axis. The intersection point of the plane and the y3 axis 
is taken as the origin 0. The nearest distance of the vortex centre path to the edge, 
i.e. to the origin 0, is denoted by L. It is assumed below that L is sufficiently larger 
than the vortex radius a. The normal to the plane of the vortex ring, taken in the 
direction of motion, lies in the (yl, y2)-plane and its direction is denoted as the 6 axis. 
The 7 axis is taken perpendicular to 6 in the counterclockwise direction. The origin 
of the ( E , r ] ,  y3)-system is taken at  the vortex centre C, its position being ( Yl(t) ,  Y2(t)) 
in the (yl, y2)-plane. The vorticity o is assumed to be concentrated in a circle of radius 
a with a very small cross-section, and the components of w in the coordinate system 
( t ,~,  y3) are represented by 

(0, -rs(k.) @-a) sin 1 1 - J  m 6 )  K - a )  COS11-L 

where 6 = (q2+ y$, and r is the strength (circulation) of the vortex ring, $ the 
azimuthal angle of a point along the ring circumference from the 7-axis, and 6 the 
radial coordinate in the (7, y3)-plane. Substituting o3 = rS(6) &(<-a) cos $ into (2.18) 
and integrating with respect to 6 and 6, one obtains 

where the s-dependence of F is omitted for simplicity, and C(t) denotes the position 
of the vortex centre a t  the time t .  In view of the condition a / L  < 1, we approximate 
the function F by the first two terms of the Taylor series, 

a 
a7 

F(6 = a ,  6 = 0 ; C )  = F(C) + - F(C) a cos $, 
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since P is independent of ys. Then we have 

a 
a7 

1; Fa cos$d$ = xu2 - P(C) = Bxa%,(C), 

where 
a a 

w, = - Y(C) = - @;(C), 
a7 a t  

1 s i n p  (sin#); 
B = A ; c d ~ f @ ; ( X )  = X 

(2x9c)f 

83 

(3.2) 

(3.3) 

The quantity nu%, is the total volume flux of the hypothetictll potential flow (around 
the edge) passing through the vortex ring. Introducing (3.2) and (3.3) into (3.19, we 
finally find the pressure formula 

Thus we have found that the pressure is proportional to s i n p  (sin#);. This angular 
dependence is the same as that of a turbulent eddy in the vicinity of the half-plane, 
investigated by Ffowcs Williams & Hall (1970). Compared with their analysis of 
turbulent eddies, the present problem has en advantage enabling an explicit 
determination of the temporal profile of the pressure. This factor is represented by 
the time derivative, of the ith order, of the volume flux nazv, through the ring. The 
flux varies as the vortex moves about ("" its centre C translates along its path). The 
derivative DI is divided into D, and DE, and the !jth derivative has the definition: 

ds 
(-io)t #(w) e-iot do = (3.5) 

(see e.g. Lighthill 1978, $1.4 for the last expression) where (-i); = e-fin. The dot 
represents differentiation with respect to the argument. 

Rectilinear vortex motion 
If the vortex path is sufficiently distant from the edge, the influence of the half-plane 
on it is small and the path is regarded as rectilinear (Appendix B). Suppose that the 
vortex translation velocity is a constant Ue, where e is a unit vector with components 
(cosa, sina) in the (y,,y,)-plane (figure 2 ) .  Then the first derivative of w, is 

(3.6) D, w, = Ue-Vw, = U(e-V)8  @;( Y), 

a 
a t  v ,  = - @+ = (e*V) @;( Y) since 

is independent of time. Using @;( Y) = Yi sin+@, one finds 

(3.7) 
since (e*V) @I = Re[eiadf/dz] and so on where f = @I( Y)+i!P( Y) = -id and 
z = yl + iy, = Yeie. Choosing the time origin at  the instant when the vortex is nearest 
to the edge with the distance Y = L, one can aasign the vortex position ( Y  cos 8, 
Y sine) a t  the time t as 

Y cos8 = Ut cosa+L sina, Y s ine  = Ut sinaTL cosa, 
where the upper sign holds for 0 < a < x and the lower for 0 2 a 3 - x .  

obtain 

(e* V) @+ = - tY+ sin ( p  - a), (c* v), @; = f Y* sin (p - 2a), 

(3.8) 

Normalizing all the lengths of the inner flow field by L and the time by L / U ,  we 

(3.9) DI[xazv,] = i~lra~UtL-~ Dig@), 



84 T. Kambe, T. Minota and Y .  Ikushima 
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FIQURE 2. Vortex paths and the streamlines of the hypothetical potential flow around the edge. 

where g ( t )  = d sin (:@ - 2a), (3.10) 

t t a n a T 1  
r = ( t 2 + i ) t ,  8 = tan-’( ) t+ tana  ’ (3.11) 

and the fractional derivative Dtg(t) is defined in (3.5) with the same notation t used 
for the dimensionless time. Substituting (3.9) in (3.4), we obtain the acoustic pressure 
as 

This shows that the pressure is proportional to 

iWa2 
p* =Po=. 

(3.12) 

(3.13) 

According to the well-known formula for the velocity U of a vortex ring of core radius 

r 8a 1 
where B = In --- 

47ca 8 4  
U = - B ,  (3.14) 

(Lamb 1932, f 163), the strength r i a  proportional to Ua for a fixed value of the ratio 
&/a. Thus we find the pressure is proportional to 

UiL-2. (3.15) 

The U-dependence p oc U! is the same as that given by Ffowcs Williams & Hall (1970), 
who gave, however, a different L-dependence, p cc L-t. This discrepancy is ascribed 
to the fact that our vortex motion is scaled by the time L / U ,  whereas their case is 
independent of the impact distance L. The angular dependence is represented by the 

(3.16) function F ( e , $ )  = s i n 9  (sin$)?. 
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FIQWE 3. Three functions f(t) = DIg(t), g(t) ,  and g(t)  determining the wave profile for a = -fh 
(k = 0,1, . . . ,4) ; g(t)  aD,[lra%,] is the rate of change of volume flux through the vortex ring. 

I t t 

The acoustic intensity is given by pa /p ,  c, which is proportional to u6L-4 and shows 
the directivity pattern of the cardioid curve s in29  for fixed q3, i.e. when received on 
the circle lying in the plane perpendicular to the edge with its centre at the edge. 

The wave profile of the pressure is represented by 

(3.17) 

defined by (3.5) and (3.10). The three functionsf(t), g(t) and g(t) were calculated for 
five values of a and shown in figure 3. It is seen that the curvef(t) shows intermediate 
behaviour between that of g(t) and g(t). Note that thef-curve of a = 0 is symmetric 
with respect to the central point of the peak, while the curve of a = --A is anti- 
symmetric. The f-curves of positive a are obtained by taking inversion of those of 
I - a I with respect to the horizontal line f = 0. 

4. Experimental setup and procedure 
In  order to detect the acoustic wave radiated by a vortex ring passing by a half-plane 

edge, one must have a device capable of producing a high-speed vortex and a system 
of apparatus that processes the acoustic signal received by the microphones. The 
device and apparatus are essentially the same as those used in the experiment to 
detect the acoustic radiation by head-on collision of two vortex rings (Kambe & 
Minota 1983). Figure 4 shows the experimental configuration, and figure 5 is a block 
diagram illustrating the data processing. 

The vortex ring is produced by means of a shock tube. A shock wave generated 
in the tube is transmitted through a pipe to a straight nozzle in an anechoic chamber 
of inner size 1.8 m on all sides and emerges out of its circular open end of diameter 
D = 6 mm to the air at room condition. A jet pulse following the shock wave develops 
into a vortex ring of radius a R 4.7 mm, which moves forward with its self-induced 
velocity U (29 m/s 5 U 5 61 m/s). Hence the Reynolds number Re referred to the 
radius a and the vortex speed U ,  i.e. Re = aU/u, ranges from 9.1 x lo3 to 1.9 x lo4. 
A large flat plate with a sharp edge is placed near the vortex path with a nearest 
distance L. The vortex ring passes by the edge without being broken as long as L 
is greater than the ring radius a. The circular form of the ring is almost unchanged 
during the motion except for the paths with L very near a. (This was observed in 
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Vortex . \ 3 w\ 

. . P . d . . . . J 

FIQURE 4. Schematic illustration of the apparatus: AB (sharp edge) = 1.77 m, W = 1.0 m, 
d = 5 mm, D (inner diameter) = 6 mm, vortex radius z 4.7 mm. 

Microprocessor 
Brie1 & Kjaer 

sound-level meter 

I I  I I A:lkw ii Counter 

FIQURE 5. Block diagram showing data-processing system, P: pressure transducers. 

a preliminary experiment with flow visualization at lower Reynolds numbers.) The 
nozzle is set in the plane perpendicular to the edge line. The plate had width 
W = 1 .O m and the edge side had AB = 1.77 m and thickness d = 5 mm (the edge AB 
being sharpened). 

The relative position of the vortex from the nozzle is observed in the presence of 
the plate edge as a function of time. In figure 6 the distance z (mm) of the vortex 
centre from the nozzle end is plotted against the time T (ps) when the vortex moves 
perpendicularly to the plate (i.e. a = -in), the time origin being fixed as described 
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F'IGURE 6. Vortex position z from the nozzle end versus time T for four caaes of vortex motion in 
the presence of the edge plate with a fixed zp = 38 mm, where the impact distance L is 9.6 mm 
for (a), (b)  and 9.7 mm for (c), (d). The solid tangent lines to the experimental plot of open circles 
correspond to the vortex speed U of (a) 29.0, (b)  36.8, (e )  40.4 and (d) 46.3 m/s. 

0 800 1600 2400 

below. The observation is made for two values of the impact distance L with 
zp = 38 mm where zp is the distance between the nozzle end and the nearest point 
of the vortex path to the plate edge. 

The acoustic wave emitted by the vortex-edge interaction is received with four 
microphones of diameter t in. (Briiel & Kjaer type 4165). They are placed in the far 
field at distances x = I x I about 620 mm from the origin 0 with different angles in 
the anechoic chamber. The microphone position is assigned by the angles 8 and 6 
as shown in figure 4. The recording of the signal and its data-processing are performed 
by means of sound-level meters (Briiel BE Kjaer type 2209), an A/D converter, a 
microprocessor, an electronic counter with a clock, a plotter and a computer. 

The test procedures are aa follows : (i) starting a shock wave to make a vortex ring 
at the nozzle exit; (ii) recording the sound waves received by the far-field microphones ; 
and (iii) extracting the acoustic signals related to the vortex-edge interaction by 
eliminating irrelevant noise. The extraction procedure consists of four steps, which 
are now described. 

First, the recording of the microphone signal is triggered by the shock signal from 
one of the two pressure transducers mounted at the junction between the nozzle and 
the pipe. The raw acoustic signal, including not only the required sound but 
unavoidable noise associated with the shock wave, is stored in a microprocessor 
in the form of a digital data set of 10oO words, denoted by A. An example of 
such an acoustic pressure signal (for the caae a = x ) ,  received at 8 = 140' and 6 = 90°, 
is shown in figure 7 (a) ,  where the vortex speed U was 30.2 m/s. The sampling time 
was 3 pa; hence the total timespan is 3000 ps (= 3 ma) as shown in the figure. The 
time origin is fixed by the trigger-signal from the second pressure transducer with 
delay 1900 pa. 
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0 600 1200 1800 2400 3000 ps 

FIGURE 7.  Acoustic signal obtained at z = 624 mm, 6 = 140' and @ = 90' for the vortex motion 
U = 30.2 m/s, L = 10.0 mm and a = 1c. (a) Data A including the vortex-edge sound, (a) data B 
without the vortex-edge sound, and (c) data C (= A - B ) .  The sampling time is 3 p, and A,  B and 
C are each lo00 words. 

In  order to extract the required signal from the data A, a second experiment is 
carried out to obtain the signal of noise only, not including the vortex-edge sound. 
A thin obstructing rod is placed just in front of the exit of the nozzle, where a vortex 
ring is supposed to form by the shock impulse. Motion of the vortex just formed is 
obstructed by the rod and the vortex is broken down immediately after its formation. 
Therefore, the signal of the vortex-edge sound does not appear at the time position 
where the data set A includes it. The received pressure signal is also stored aa a digital 
data set of another 1000 words, denoted by B. Its trace is shown in figure 7 (b), with 
the same conditions as in the signal (a )  except for the effect of the thin rod. However, 
the signal (b) possibly contains the waves generated by the interaction of the vortex 
with the rod which should appear earlier than the vortex-edge sound. Hence both 
signals are separated on the time axis. 

In  the third step we subtract the set of data B from the data A word by word. 
The trace of the data denoted by C (= A- B) is shown in figure 7 (c). The wave V 
seen in the signal (c)  is considered to be the acoustic pressure emitted by the 
vortex-edge interaction. The signal thus obtained still contains random fluctuation 
noise. Therefore the fourth step is to take an ensemble average over ten such sets 
of data, denoted by ( ). The final data represent an average profile of the vortex-edge 
sound received at  0 = 140" and 4 = 90". The acoustic pressures at various angular 
positions have been also measured with a fixed vortex speed. 

In  $5 we consider only the average waves (V),  obtained for various conditions of 
L, U and a, and examine whether they have the properties predicted by the formulae 
(3.15)-(3.17). The data analysis that follows is based on the vortex radius a and the 
translation speed U .  Hence the time is scaled by a /  U .  We consider below three cases 
of vortex motion corresponding to a = -in, n and -n. 
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FIGWE 8. Average profiles (bold lines) of the. acoustic pressure measured at twelve mgular positions 
B (q5 = 90°, 2 = 634 mm) for U = 30.4 m/s, a = -@ and L = 9.6 mm. Absolute scales are ahown. 
The light curves denote r.m.8. error of the average curve at each time point. 

5. Vortex motion with a = -iz 
6.1, Directivity 

In  this case the vortex moves perpendicularly to the half-plane and passes by its edge. 
In  order to see whether the observed waves obey the theoretical directivity (3.16), 
we first show the profiles detected at various angles 8 in the plane $ = 90°, and then 
afterwards examine the $-dependence for fixed 8. 

Figure 8 shows the average profiles (bold lines) of the acoustic pressure at every 
+30° of angular position of 8 from 8 = f lo", with U = 30.4 m/s, L = 9.6 mm, 
measured in the far field at 5 = 1060 = 634 mm. (The measurement has been done 
at every loo.) In  this figure, the root-mean-square error of the average ourve at each 
time point is plotted by light solid lines. (The pressure amplitude Ap in the figure 
is used later in figure 16.) The directivity is clearly seen by the polar plot of figure 9, 
in which radial length from the origin represents magnitude of pressure with linear 
scale. This shows the instantaneous directivity plot at t = 1146 p, in which the 
experimental points o and 0 denote positive and negative values respectively. 

In  view of the theoretical directivity sin p for $ = 90°, we assume that the observed 
pressure p(6 ,  t )  is expanded in the series form 

N N 

k-1 k-1 
p (8 ,  t )  = b,(t)+ Z bk(t) c+8+ I: a&) sinik8. (5.1) 

The decomposition calculated with the least-square method for N = 4 gives the curves 
a,(t) and bk(t) illustrated in figure 10. It is Seen that al ( t )  s i n p  is a dominant 
component, and the others (including those coefficients not shown, omitted because 
of similar behaviour) &re very small. This feature is consistent with the theory. 
The solid curve in figure 9 corresponds to al(t) sinp at t = 1146 pa. For different 
values of L, we obtain similar distributions. Figures 11 and 12 illustrate the 
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90' 

- 90" 
FIQURE Directivity plot of the pressure. The radial distance represents magn..ude of pressure 
in Pa. The open (positive) and filled (negative) circles show the data corresponding to figure 8 
at t = 1146 pa, and the solid curve is al(t) s i n p  with a, taken from figure 10 a t  the same time. 
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FIOWE 10. Fourier coefficients corresponding to the data of figure 8, calculated for N = 4. The 
coefficients (b,,, b,, b,, a8, a,) show small fluctuation behaviours similar to those (bl ,  b,, a,) illustrated 
here. 

Fourier coefficients and the directivity plot respectively, for a larger L = 13.2 mrn 
(U = 29.0 m/s, z = 630 mm, # = 90'). 

Next we consider the #-dependence. Figure 13 shows the average profiles of the 
pressure observed at  every 30' angular position of # from 10' in the planes 8 = 90" 
and - 90°, which includes the line ON parallel to the nozzle, for the case U = 30.1 m/s 
and L = 11 mm. The data acquisition has been made at every 10'. In  view of the 
theoretical distribution of the form (sin #)+, we sought the best-fitted curve c(t )  (sin #)+ 
by the least-square method. The coefficient curve c( t )  is shown in figure 14. The polar 
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FIGURE 11.  Fourier coefficients of the pressure (z = 630 mm, q5 = Soo) 
for the vortex path of larger L = 13.2 mm (U = 29.0 m/s, a = -4~). 

mm 

FIQURE 12. Directivity plot of the pressure for the case of figure 11 at t = 1845 ps. The solid 
curve is a, sin p ,  and the white and black circles are taken from average profiles. 

plot of the #-directivity is given in figure 15, where the open (positive) and filled 
(negative) circles show experimental points and the solid curve corresponds to 
c(t) (sin#)+ at t = 1980 pa. 

In these diagrams the theoretical directionality (3.16) is reproduced fairly well. 

5.2. &ding laws 
Let us next examine the power law (3.15). From the observed profiles as shown in 
@re 8, we take the amplitude Ap of pressure and plot it against the vortex speed 
U for fixed 8 and # = 90". Figure 16 is a log-log plot of the (Ap,  U)-diagram for four 

4 FLU 166 
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FIGURE 13. Average profiles (bold lines) of the pressure measured a t  six #-positions for both 
0 = f90" (z = 626 mm) in the caae when U = 30.1 m/s, a = -&t and L = 11 mm. The light curves 
denote r.m.s. error at  each time point. 
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-0.1 

I 1 I 1 

600 1200 1800 2400 3000 
(PS) 

FIGURE 14. The profile c( t )  (corresponding to  the previous figure) obtained by the least-squares 
method (bold), assuming that the pressure is represented by c ( t )  (sin #)i with 0 fixed. The light curves 
denote r.m.8. error. 

values of 8. The average value of the slope /3 (defined in the legend) of the straight 
lines obtained by the least-squares method (solid lines) is found to be 2.53. This 
suggests the theoretical scaling law p oc Ui for the amplitude holds with reasonable 
accuracy in the experiment. In order to see this property for the whole timespan, 
we plot the normalized pressure p / U !  a t  8 = - 160' versus the normalized time 
r = Ut/a ,  for eight values of vortex speed U from 31 to 61 m/s, with other parameters 
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1 80" 

FIQURE 15. Plot of #-directivity. The solid curve is c ( t )  (sin#)i a t  t = 1980 ps, and the white 
(positive) and black (negative) circles show the data corresponding to figure 13 at the same time. 

I I I I I 

30 40 50 60 70 

U W s )  
FIGURE 16. Pressure amplitude Ap (see figure 8) plotted against the vortex speed U for four values 
of 0 ($ = 9 0 O ) .  The straight lines are fixed by the least-square method with the assumed form 
1nAp = p(0) In U+y(B) .  "he z and L are as in figure 17. 

4-2 
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FIQURE 17. Normalized pressure -p /u f  at 5 = 628 mm and t9 = - 160" ($ = 90") against 
normalized time 7 = Ut/u (a = 4.7 mm, L = 9.7 mm) for eight values of U (m/a): -, 30.9; ---, 
35.8; 40.4; --.-, 46.3; -, 50.3; ---, 55.7; * * *  * *  ,58.7; *-a_* , 61.0. 
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FIGURE 18. Log-log plot of Ap against the impact distance L for 

four values of 8 (4 = go", 5 = 628 mm, U = 30.6 m/s). 

fixed (figure 17). In spite of the relatively large variation in magnitude of Ui ,  
coincidence of the curves p / a  is reasonable. This indicates that the U! law of the 
pressure is valid in the range examined. 

Figure 18 is a diagram examining the L-dependence, in which logAp is plotted 
against log L for four values of8 ($ = 90") with other parameters fixed. This suggests 
that the experimental L-dependence is p oc L-2.aa, which is not far from the 
theoretical law p a L-2. Figure 19 shows the normalized pressure p/L-2.24 against 
r for six values of L with U = 30.6 m/s, x = 628 mm and B = - 1 6 0 O .  There are some 
fluctuations in the experimental values in the (Ap, L)-diagram. Hence one cannot 
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FIQURE 19. Normalized pressure -p/L-'aa4 plotted against T = Ut/a  (U = 30.6 m/s, x = 628 mm, 
B = -160") for six values of L (mm): .-.-, 8.6; -, 9.7; -, 10.7; .-.- , 11.6; - * - . .  , 12.8; 

, 13.6. --- 

0 400 800 1200 1600 2000 

f (w) 
FIGURE 20. Comparison of the experimental profile al(t) (bold line) from figure 10 with the 
theoretical curves for &/a = 0.2 (thin broken curve) and 0.3 (thick broken curve) for U = 30.4 m/s, 
L = 9.6 mm and x = 634 mm. 

exclude the other pressure laws of the form Ap oc (L--LJn, where the experimental 
value of Lo (mm) is - 1.3 for n = 2.5, 1.6 for n = 2.0, and 3.9 for n = 1.5, etc. 
However, it  is observed that the normalization of the wave profiles by the law 
p oc L-2.24 gives a better fit than the other laws. Thus the experimental observation 
indicates that the predicted scaling law p cc @L-8 holds with reasonable accuracy. 

5.3. Wave projile 
The data analysis in $5.1 has shown that the wave is substantially represented by 
al(t) s i n p  in the plane $ = 90" (with fixed x ) .  Figure 20 compares the experimental 
profile al(t) given in figure 10 with the theoretical curve p/B'(O, $ = 90") obtained by 
using (3.12) with the same parameters U = 30.4 m/s, L = 9.6 mm and x = 634 mm 
and using the curve off(t) for a = -in in figure 3(a). The theoretical curves shown 
by broken curves are computed by specifying the relative core size as cY/a = 0.2 (thin) 
and 0.3 (thick) in (3.14). It is observed that the present theory can predict the main 
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- 90" 

F I ~ U R E  21. Perspective profile of the wave al(t)  sin46 with al(t) from figure 10. The radial coordinate 
is the time and the vertical axis the pressure. The bold line time marks are 0, 300, 600, 900, 1200 
and 1500 ps from the outermost circle to the inner ones. 

+ x  

- 90" 
FIQURE 22. The directivity of the pressure for the vortex path with 
a = + x ,  U = 30.2 m/s, L = 9.9 mm, x = 624 mm and 9 = 90'. 

features of the observed profile. This verifies that the wave profile is determined by 
the tth time derivative of the volume flux of hypothetical potential flow through the 
vortex. Figure 21 illustrates a perspective profile of the wave al(t)  sinw with al(t)  
of figure 10, the radial axis being the time and the vertical axis the pressure. The 
outer circles are earlier in time than the inner ones. The wave pressure takes opposite 
signs on both sides of the plate at e / G  = f 180'. 

6. Vortex motion with a = + x  
The present formula (3.12) was also examined for the vortex in the path with 

a = fx (figure 2). In this case the vortex moves parallel to the half-plane, and the 
vortex core impinges on the edge when L 6 a. Only the &dependence is considered. 
Figures 22 and 23 show the directivity plot and the Fourier coefficients ar(t) and bk( t )  
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FIGURE 23. Fourier coefficients corresponding to the data 
of figure 22, calculated for N = 4 in (5.1). 

FIQURE 24. Perspective profile of the wave a,(t)sinfO with al(t) from figure 23. The bold 
circumferential time-mark lines are 600, 1080, 1580, 2040 and 2520 ps from the outermost circle 
to the inner ones. 

respectively, for a = +n with U = 30.2 m/s, L = 9.9 mm and 2 = 624 mm. Here 
again the component a, is dominant. Figure 24 illustrates a perspective profde of the 
wave al(t) sin9 with al(t) of figure 23. For the vortex running on the opposite side 
of the plate, where the path is defined by a = - x ,  U = 30.3 m/s, L = 10.7 mm and 
x = 622 mm, we also examined the &dependence of the wave, and sought the best- 
fitted curve al(t) sinp by the least-square method. The coefficient al(t)  (bold solid) 
is shown in figure 25, together with the root-mean-square error (light solid). The 
perspective profile of the wave al(t) s i n p  is illustrated in figure 26. Finally figure 27 
compares the experimental a, curves with corresponding theoretical curves for the 
assumed value of the core size d/a = 0.2 (thin broken) and 0.3 (thick broken). These 
again confirm the validity of the formula (3.12) with reasonable accuracy. 
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FIQURE 25. The profile al(t)  (bold) obtained for the vortex path with a = - x ,  L = 10.7 mm and 
U = 30.3 m/s, assuming that the pressure (at z = 622 mm and q5 = 90') is represented by al(t) sinw. 
The light curve is r.m.8. error. 

+ 180" 
- 180" 

-- 

- 90" 

FIQTJRE 26. Perspective profile of the wave al(t) sinw obtained 
from figure 25. The time marks are as in figure 24. 

7. Discussion and conclusion 
Acoustic emission by vortex-edge interaction is considered both theoretically and 

experimentally. The theory of vortex sound enables us to represent the acoustic 
pressure in the far field in terms of the motion of a vortex ring near the half-plane 
edge. The pressure is proportional to the angular factor F(B,$) and the time factor 
f(t). The directivity pattern of the intensity is represented by the cardioid curve on 
the equidistant points with fixed angle 4. The angular dependence is the same as that 
of a turbulent eddy in the vicinity of a half-plane, investigated by Ffowcs Williams 
& Hall (1970) and Crighton & Leppington (1970). 

The observed wave profiles comparfd well with our theoretical ones which depend 
on the rate of change of volume flux, Dt[7ca2vv,], of a hypothetical potential flow around 
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FIGURE 27. Comparison of the experimental curve al(t) (solid) taken from figures 23 and 25 
with the theoretical ones for &/a = 0.2 (thin broken curve) and 0.3 (thick broken). 

the edge. This law of the temporal profile is a three-dimensional generalization of the 
two-dimensional problem, in which wave profile is determined by the rate at which 
a vortex filament traverses the streamlines of the same potential flow (Howe 1975). 

The present formula predicts the scaling law p K GL-* for the sound emitted by 
a vortex ring of velocity Uand nearest distance L to the edge. Owing to this property, 
the sound intensity is proportional to u6, as was shown by Ffowcs Williams & Hall. 
However the L-dependence is different from their law p oc Ld. This is attributed to 
the different timescales of the source flow in each case. 

The angular dependence and the scaling law of the pressure have been reproduced 
with good accuracy in the observation. In  the experiment, however, the powers of 
U and L are found to be 2.53 and -2.24 respectively. Since the experimental 
values are scattered in the p-L diagram, we cannot exclude the other power laws 

One of the important results of the present work is the agreement between the 
predicted wave profile and the observed one, as shown in figures 20 and 27. This 
verifies that the profile is determined by the i th  time derivative of the volume flux 
(through the vortex ring) of a hypothetical potential flow around the edge. In  order 
to calculate the wave profile we used two simplifying assumptions, in addition to the 
basic assumptions of the theory in $2.1. First, the vortex is supposed to take a 
straight path. This is equivalent to the application of a force that will give rise to 
emission of a dipole wave. However, the analysis in Appendix B shows that this 
correction is very small. Secondly the vortex ring is assumed to have a vortex core 
of the size &/a = 0.2 to 0.3 and to satisfy the relation (3.14). 

Finally, it should be noted that the velocity of the potential flow around the edge 
becomes infinite at the edge where viscous effect may not be neglected. In  an 
investigation of sound diffraction by a half-plane in a viscous medium at rest, Alblas 
(1957) showed that small viscosity removes the singularity in the velocity at the edge 
without appreciably affecting the far-field pressure. In  a different point of view to 
avoid the singularity, Jones (1972) considered the effect of a Kutta condition at the 

p cc (L-L,)-n. 
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edge and showed that in some circumstances that condition alters the u5 law of 
intensity to a u3 law. It is shown that observation does not support this. It appears 
that the present experiment without mean flow supports the Alblas' idea of the 
viscosity effect removing the singularity at the edge without affecting the far-field 
pressure appreciably. 

The authors would like to express their deep appreciation to Professor T. Murakami 
in Kyushu University, where the present experimental work has been done with his 
kind cooperation. They are also grateful to the editor and the referees for comments 
that led to a clearer presentation of this work. 

Appendix A. Low-frequency Green function 

Green function G: 
The diffraction problem is well-formulated with a Fourier representation of the 

B (x, y ;  :) e-iwt dw. 
27t I-, (A 1) 

(A 2) 

aQ/an=o  on^. (A 3) 

1 " o  
G(x,Y; t )  = - 

Then (2.6) is reduced to 

(V2+k2)B(x,y; k) = -S(X-Y), 

where k = w / c ,  and the boundary condition is 

The solution of this problem was given exactly by Macdonald (1915) and used by 
Ffowcs Williams & Hall (1970) and Crighton & Leppington (1970). The solution is 
also found by using the Wiener-Hopf method (Noble 1958). 

We summarize their results briefly and then present a series-form solution for small 
kl. The incident field is 

Q o ( X , Y ;  k) = eiklx-yl, (A 4) 
4xIx-YI 

where the time dependence of the field is proportional to e@". Since 1x1 = x is 
assumed to be sufficiently large compared with I y I = y, this is expressed asymptot- 
ically as 

where 
1 

4x2 A = -exp[ikx-ik23y,], 2 = x / x  = (21,22,23). 

The unit vector 2 is given another form by using the polar angle q5 and the azimuthal 
angle 8: 

9, = sin# cos8, 22 = sin$ sine, 23 = cos$. (A 7)  

The problem (A 2) and (A 3) is reduced to the problem of finding a scattered field 
e s ( x , y ;  k) associated with the incident field t??o(x,y; k), where the total Green 
function Q is given by 0 + Bs. This is accomplished by the Wiener-Hopf technique, 
and the scattered field ds is given by 
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(Noble 1958, chap. 11), where 

P(v) = s," eiUadu 

wl = ( 2 ~ ~ ) t  cos f (8 -8 ) ,  

vortex-edge interaction 

(Fresnel function), 

2)s = ( 2 ~ ~ 1 4  c o s + ( ~ + e ) , )  
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(A 9) 

(A 10) K = k(i -2$ = k sin$, 

Y = (y:+yi)t, 8 = tan-1 
( Y J  i 

The expressions (A 4) and (A 8)  give the total Green function. 
The compactness conditions (ii) and (iii) enable us to use the low-frequency Green 

function (Howe 1975), which is expressed by first few terms of the asymptotic 
expansion valid for small kl. Owing to the relation K = k sin$ along with the order 
estimations like Y = O(Z), the parameter K Y  = O(E)  is regarded as small. Hence the 
expressions (A 4) and (A 8 )  can be developed into the asymptotic series 

GS = 8~+41+a,+8a+ ... , (A 12) 

8, = F,(X, Y, zs) (-ik)" exp (ikx-ik cos$ ys), 

F, = A, @,(X) @,( Y) x-"-l (m = f, 1, g, 2 ,  . . .), 

9 , ( X )  = (x sin$), sinm8, @,( Y) = Ym sinme, (A 14) 

x = (21, "a), y = @I, Y2). (A 15) 
It is readily Seen that the condition a(80+8s)/ay2 = 0, on y2 = 0 and - 00 < y1 < 0, 
is satisfied with the above expressions. The functions 9" are harmonic functions, and, 
in particular, represents the velocity potential of the flow around the edge of the 
half-plane . 

Appendix B. Influence of the half-plane on the vortex motion 
The perturbation velocity by the half-plane (semi-infinite plate) is estimated here 

when the vortex path is sufficiently distant from the edge. This is accomplished by 
using the velocity potential of a simple source satisfying the condition of vanishing 
normal velocity at  the boundary, given by Macdonald (1915). The potential of a unit 
strength source is denoted by OS(R, 8, z ;  R,, 8,, zo = 0), where (R, 8, z )  is the cylindrical 
coordinate and the variables with suffix 0 stand for the source position situated in 
the equatorial plane zo = 0. Based on the property that the velocity field of a vortex 
ring tends to that of a dipole asymptotically at large distances, the influence from 
the edge is calculated by using the dipole potential 9, derived from GS as 

a i a  
9,= P e,-+e ( aR, 

where e = (e,, e,, 0) is the unit vector in the direction of the dipole axis coinciding 
with the axis of the vortex ring and P denotes the dipole strength. Corresponding 
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to the vortex ring of radius a and strength r, the dipole strength is given by 
P = na2r. 

Macdonald’s expression for the source potential of a unit rate of outflow takes the 
form 

tan-’(tanh!#)), (B 1 )  

where r2 = R2+Ri-2RRo cos(8-8,)+z2, 

r f 2  = R2 + Ri - 2RR, cos (e+ 0,) + 22, 

2 
r 

sinht; = - (RR,)t cos+(e-8,), 

sinht;’ = -- (RR,)t cos+(e+e,). 
2 
r’ 

In order to get an estimate of the influence of the plate, we are particularly interested 
in the perturbation velocity when the vortex is at the position 0 = 0. Some straight- 
forward calculations show 

where I 6 I Q 1, 0, = 0,  R = R -  R, and I R‘ 1 Q R,. The first terms on the right-hand 
sides of (B 2) represent the dipole potential velocity in an unbounded domain and 
the remaining terms are the perturbations from the plate. Let us consider the vortex 
moving perpendicularly to the plate and passing by the edge at a distance L( = R,) 
when 8, = 0. Hence we put eR = 0 and ee = 1. The perturbation velocity (u’,v’,O) 
brought about by the plate is given by 

and u‘ = 0. Using the formula (3.14) for the vortex velocity U,  and writing v = I v’ I , 
we obtain 

v 1  

Thus i t  is found that the perturbation diminishes like ( u / L ) ~  as the distance L 
increases. For the case of the relative core size &/a = 0.2-0.3, the factor B takes the 
values 3.4-3.0. When the distance L is 2a, or 3a, as in the experiment, the fractional 
ratio of the perturbation velocity (B 4) takes very small values, that is 

v/ U = 3.5 x lop3 or 1 .O x lop3 (B 5) 

respectively, with B = 3.0. 
Suppose that the vortex path was made straight by a fictitious force F(t)  that 

was applied to the vortex. The force is estimated in order of magnitude as 
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Fo = po P(v/U) /r ,  where T = L / U  is the timescale of the vortex motion. This force 
causes emission of a dipole wave. Its amplitude would have a magnitude of order 

1 d F  1 
D - ~  dt x 

(Curle 1955). We may approximate U/dt  by Fo/r. Thus we obtain the relative 
magnitude of P,, to P* of (3.13) in the main text, which expresses the magnitude of 
the edge sound under consideration, as 

p 

Considering the estimated value of v/ U in (B 5 )  and the smallness of the Mach number 
U/c ,  we find that the dipole-wave correction would be very small. 
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